About Algorithm
From My Limbic Wiki
Tips
- Use Set/Hashet for unique values https://leetcode.com/problems/contains-duplicate/
- Use Math.max(int,int) to get the max number between a number and a calculation. https://leetcode.com/problems/best-time-to-buy-and-sell-stock/
- A product invert the sign, the max becomes the min, and the min becomes the max: https://leetcode.com/problems/maximum-product-subarray/
- (a & b) << 1 - is to carry
Array
Kadane’s Algorithm - adapted on cumulated products
public int[] productExceptSelf(int[] nums) {
int length = nums.length;
int[] answer = new int[nums.length];
// Calculate left product
int leftProduct = 1;
for (int i = 0; i < length; i++) {
answer[i] = leftProduct;
leftProduct *= nums[i];
}
// Calculate right product
int rightProduct = 1;
for (int i = length - 1; i >= 0; i--) {
answer[i] *= rightProduct;
rightProduct *= nums[i];
}
return answer;
}
Two Pass - (LeetCode)- to calculate the left and right products
class Solution {
public int[] productExceptSelf(int[] nums) {
int length = nums.length;
int[] answer = new int[nums.length];
int leftProduct = 1;
for (int i = 0; i < length; i++) {
answer[i] = leftProduct;
leftProduct *= nums[i];
}
int rightProduct = 1;
for (int i = length - 1; i >= 0; i--) {
answer[i] *= rightProduct;
rightProduct *= nums[i];
}
return answer;
}
}
Binary Search - (LeetCode - LeetCode) - At every iteration, it divide the space by 2 using left or right.
- Find the pivot
- Binary Search to left side, Binary Search to right side
private int binarySearch(
int[] nums,
int leftBoundary,
int rightBoundary,
int target
) {
int leftIndex = leftBoundary;
int rightIndex = rightBoundary;
while (leftIndex <= rightIndex) {
int midIndex = (leftIndex + rightIndex) / 2;
int midValue = nums[midIndex];
if (midValue == target) {
return midIndex;
} else if (midValue > target) {
rightIndex = midIndex - 1;
} else {
leftIndex = midIndex + 1;
}
}
return -1;
}
3 Sum - (LeetCode) - fix a value, use left and right pointers
- Sort the array first !
- Fix I as length-2
- skip duplicates for I
- Move left and right pointers to match 0
- if one is found, skip duplicates and continue to search for other match
- if left & right pointers are equal, continue with a new I
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
Set<List<Integer>> results = new HashSet<>();
for(int i = 0; i < nums.length - 2; i++){
// Skip duplicates for fixed element
if (i > 0 && nums[i] == nums [i - 1]) continue;
int pointerLeft = i + 1;
int pointerRight = nums.length -1;
while(pointerLeft < pointerRight){
int sum = nums[pointerLeft] + nums[i] + nums[pointerRight];
if(sum == 0){
// Got one !
results.add(Arrays.asList(nums[pointerLeft], nums[i], nums[pointerRight]));
// Skip duplicates for left and right pointers
while(pointerLeft < pointerRight && nums[pointerLeft] == nums[pointerLeft + 1]){ pointerLeft++; }
while(pointerRight > pointerLeft && nums[pointerRight] == nums[pointerRight - 1]){ pointerRight--; }
pointerLeft++;
pointerRight--;
}else if (sum < 0){
// Sum is too small, move left pointer to try to increase the sum
pointerLeft++;
}else{
// Sum is too small, move right pointer to try to increase the sum
pointerRight--;
}
}
}
return new ArrayList<>(results);
}
}
Two-Pointer Approach - (LeetCode) - Calculate the area and move pointers
- Calculate the area
- Move pointers
class Solution {
public int maxArea(int[] height) {
int maxArea = 0;
int pointerLeft = 0;
int pointerRight = height.length - 1;
while(pointerLeft < pointerRight){
// Keep the lowest height to calculate the area for those two pointers
int minHeight = Math.min(height[pointerLeft], height[pointerRight]);
int area = minHeight * (pointerRight - pointerLeft);
maxArea = Math.max(area, maxArea);
if (height[pointerLeft] < height[pointerRight]) {
pointerLeft++;
} else {
pointerRight--;
}
}
return maxArea;
}
}
Binary
Sum of Two Integers - (LeetCode) - int carry = (a & b) << 1;
- Store the carry
- Get the rest
Think about this story: 2 bags of coins are emptied on a table. The overlapping pieces are carried in B. The rest is stored in A
class Solution {
public int getSum(int a, int b) {
while (b != 0) {
int carry = (a & b) << 1;
a = a ^ b;
b = carry;
}
return a;
}
}
Number of 1 bits - (LeetCode) - if ((n & mask) != 0)
- The equivalent of a pointer in an array is here a Mask, we move it using <<= 1 to the next bit
- And continue to 32 bits as it is mentioned in the exercise.
- & is a binary AND
class Solution {
public int hammingWeight(int n) {
int bits = 0;
int mask = 1;
for (int i = 0; i < 32; i++) {
if ((n & mask) != 0) {
bits++;
}
mask <<= 1;
}
return bits;
}
// public int hammingWeight(int n) {
// return Integer.bitCount(n);
// }
}
Counting Bits - (LeetCode) - ans[i] = ans[i >> 1] + (i & 1);
class Solution {
public int[] countBits(int n) {
int[] ans = new int[n + 1];
for(int i = 0; i <= n; i++){
// The number of set bits in 'i' is calculated based on a previous result.
//
// i >> 1: This is a bitwise right shift, equivalent to integer division by 2 (i / 2).
// It gives us the number 'i' with its last bit removed. The bit count for this
// smaller number, ans[i >> 1], has already been computed.
//
// i & 1: This is a bitwise AND with 1, equivalent to the modulo operator (i % 2).
// It gives us the value of the last bit of 'i'. It's 1 if 'i' is odd, 0 if 'i' is even.
//
// So, ans[i] = (bits in the first part of i) + (the last bit of i).
ans[i] = ans[i >> 1] + (i & 1);
}
return ans;
}
}
Bit Manipulation - Missing Number - xorNums ^= nums[i] ^ i;
class Solution {
public int missingNumber(int[] nums) {
int xorNums = nums.length;
for(int i=0; i < nums.length; i++){
xorNums ^= nums[i] ^ i;
}
return xorNums;
}
// public int missingNumber(int[] nums) {
// Arrays.sort(nums);
// for(int i=0; i < nums.length; i++){
// if(i!=nums[i]) return i;
// }
// return nums.length;
// }
}
- QuickSort (Java)
- Bit Manipulation
- Backtracking
- Graph Traversal
- Union-Find
- Dynamic Programming
- Greedy
- Sliding Window / Two Pointers
- BubbleSort (Java)
- Swapping the adjacent numbers two by two by order
Graphs
- Dijkstra
- Topologic sorting
Cryptography & Compression
- Shannon-Fano
- Huffman
- Diffie-Hellman
- RSA
Prime Numbers
- ?
Most beautiful Equation
- P=NP (Les Équations de Yang Mills)
- Millenium problems (Clay Mathematics Institute)
- Few ideas